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Abstract. A method is described for estimating rapid
rate constants from the distributions of current amplitude
observed in single-channel electrical recordings. It has
the advantages over previous, similar approaches that it
can accommodate both multistate kinetic models and ad-
justable filtering of the data using an 8-pole Bessel filter.
The method is conceptually straightforward: the ob-
served distributions of current amplitude are compared
with theoretical distributions derived by combining sev-
eral simplifying assumptions about the underlying sto-
chastic process with a model of the filter and electrical
noise. Parameters are estimated by approximate maxi-
mum likelihood. The method was used successfully to
estimate rate constants for both a simple two-state kinetic
model (the transitions between open and closed states
during the rapid gating of an outward-rectifying K+-
selective channel in the plasma membrane ofAcetabu-
laria) and a complex multistate kinetic model (the block-
ade of the maxi cation channel in the plasma membrane
of rye roots by verapamil). For the two-state model, pa-
rameters were estimated well, provided that they were
not too fast or too slow in relation to the sampling rate.
In the three-state model the precision of estimates de-
pended in a complex way on the values of all rate pa-
rameters in the model.

Key words: Acetabularia— Blockade — Channel ki-
netics — Gating — K+ channel — Maxi cation channel
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Introduction

The temporal analysis of currents obtained from an in-
dividual ion channel provides a means both to investigate

intrinsic changes in the conformation of the channel pro-
tein itself and to identify the mechanisms of interactions
between the channel protein and its effectors. The aim of
such analyses is to determine the kinetic schemes under-
lying, for example, the process of channel gating or the
mechanism of ionic blockade of an ion channel. In ad-
dition to providing an empirical description, such infor-
mation suggests a mechanistic interpretation by which to
compare information on protein sequence and structure.

Several methods are available for estimating the life-
times of distinct kinetic states of an ion channel, and the
rate constants for transitions between each state, from
single-channel current records. Such records can be
thought of as resulting from the superimposition of ex-
perimental noise on an underlying process that consists
of transitions between different current levels. One
widely used method of analysis begins by attempting to
reconstruct the noise-free record. This can be done by
filtering the data with a high-order Bessel filter and using
threshold detection (Colquhoun, 1994), by using a high-
order Hinkley detector (Schultze & Draber, 1993; Draber
& Schultze, 1994) or by using a Bayesian approach
(Fredkin & Rice, 1992b). Rate parameters can then be
estimated from the distributions of dwell times at the
various current levels, though the analysis is complicated
by the fact that short dwell times will be missed by the
restoration process (e.g., Ball & Davies, 1995). This ap-
proach works well if the mean lifetimes of the kinetic
states are lengthy, but as mean lifetimes decrease the
method eventually becomes unreliable, because there are
too many missed events. Typically, this occurs when
mean lifetimes are 10–100msec, depending on the extent
of experimental noise and filtering, and on the sampling
frequency of the recording equipment.

An alternative, and more direct approach, is to
model the observed current record directly, without at-
tempting to restore the underlying process (Fredkin &
Rice, 1992a; Albertsen & Hansen, 1994). This appearsCorrespondence to:P.J. White
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to be a promising approach, but it is computationally
intensive and therefore not presently well-suited to the
analysis of large numbers of current records.

Lifetimes of channel conformations between 1 msec
and 1 msec (this value depending upon the filter time
constant) can be estimated from current-amplitude fre-
quency distributions. These become distorted from a
Gaussian to an asymmetric distribution, which approxi-
mates a beta distribution, within this temporal range
(Yellen, 1984; Pietrobon, Prod’hom & Hess, 1989; Klie-
ber & Gradmann, 1993). Lifetimes of kinetic states have
been estimated from current-amplitude frequency distri-
butions both empirically for two-state kinetic models, by
comparing simulated and experimental data (Yellen,
1984; Pietrobon et al., 1989; Klieber & Gradmann,
1993), and numerically, for multistate kinetic models
when data have been filtered by a single-pole filter
(Rießner & Hansen, 1995). If the lifetime of a channel
conformation is shorter than a microsecond, analysis
based on beta distributions can no longer be applied.
Lifetimes of brief kinetic states are obtained either by
comparing the noise of different channel conformations
(Heinemann & Sigworth, 1988), or from the analysis of
the higher-order cumulants of the current-amplitude dis-
tribution (Heinemann & Sigworth, 1991).

In this paper a method of estimating the lifetimes of
channel conformational states which lie between about
30 msec and 1msec is described. This method is based
on the analysis of distributions of current amplitude and
may be viewed as an extention of analyses based on beta
distributions. It has the advantages over previous ap-
proaches that it can accommodate both multistate kinetic
models and the filtering of data using an 8-pole Bessel
filter. In the approach described here the theoretical dis-
tribution of current amplitude is derived directly by com-
bining several simplifying assumptions about the under-
lying stochastic process with a model of the filter and
electrical noise. The approach has been used success-
fully to estimate rate constants for both a simple two-
state kinetic model, the transitions between open and
closed states during the rapid gating of an outward-
rectifying K+-selective channel in the plasma membrane
of Acetabularia acetabulum(White, Smahel & Thiel,
1993), and a complex multistate kinetic model, the
blockade of the maxi cation channel in the plasma mem-
brane of rye (Secale cerealeL.) roots by verapamil
(White, 1996).

Materials and Methods

ION CHANNEL RECORDINGS

Plasma membrane vesicles fromAcetabularia acetabulum(White et
al., 1993) or from rye (Secale cerealeL.) roots (White & Tester, 1992)
were incorporated into planar lipid bilayers (PLB; 0.2 mm in diameter)

composed of 30 mM synthetic 1-palmitoyl-2-oleoyl phosphatidyletha-
nolamine dispersed in n-decane. The side of the PLB to which vesicles
were added was defined ascis. Experimental protocols used to char-
acterize the voltage-dependence of the 149 pS (chord conductance at
Erev in 100 mM KCl) K+ channel fromAcetabulariaplasma membrane
are given in White, Smahel & Thiel (1993) and those used to determine
the effects of verapamil on the maxi cation channel in the plasma
membrane of rye roots are given in White (1996). Voltages are ex-
pressedtranswith respect tocis. It was assumed that the cytoplasmic
side of the plasma membrane faces the vesicle lumen and that vesicles
fuse with PLB such that the inside becomes exposed to thetrans
chamber (White & Tester, 1992, 1994). Thus, the sign of the mem-
brane potential is in accordance with the physiological convention
(Bertl et al., 1992). Movement of cations from thecis (extracellular) to
the trans (cytoplasmic) compartment is indicated by a negative current
and appears as a downward deflection in current traces. This conven-
tion has the opposite polarity to that used in previous studies charac-
terizing the maxi cation channel in the plasma membrane of rye roots
in PLB (White & Tester, 1992; White, 1993, 1996).

Current through individual ion channels was monitored under
voltage-clamp conditions using a low noise operational amplifier with
frequency compensation (Miller, 1982), connected to the bilayer cham-
bers by calomel electrodes and 3M KCl/1% agar salt bridges. Data
were stored either on videotape after digitizing by a Sony audio-to-
digital converter (PCM-701ES, 22 kHz per channel; Sony, Japan), for
experiments with theAcetabulariaK+ channel, or on Digital Audio
Tape (Sony DTC-1000ES; 44.1 kHz sampling with 16-bit linear digital
to analog conversion) for experiments with the maxi cation channel
from rye roots. For analysis, recordings of channel activity were re-
played and filtered using an 8-pole tunable low pass Bessel filter
(902LPF, Frequency Devices, Haverhill, MA) set at 4 kHz (corner
frequency on dial). The operational amplifier itself also filtered the
data, with a cutoff frequency that we estimated as about 2.25 kHz.
The combined effect of these filters was approximated as a single
Bessel filter (Colquhoun & Sigworth, 1983) with a cutoff frequency

!
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+

1

2.252

= 1.96 kHz

which, given the uncertainty about the cutoff frequency of the opera-
tional amplifier, has been taken as 2 kHz.

The impulse response function of the Bessel filter was approxi-
mated by a Gaussian probability density function (Colquhoun & Sig-
worth, 1983). Small weights were set to zero and the remaining
weights were rescaled to sum to one. The number of non-zero weights
in the impulse response function was 9 for data stored on videotape and
15 for data stored on Digital Audio Tape. Increasing the number of
non-zero weights resulted in a smoother distribution of current ampli-
tudes and the use of fewer non-zero weights may result in a rippling in
the simulated distribution, such as that observed in Fig. 2D. The fil-
tered data were sampled by computer after digitization to 12 bit accu-
racy using a CED 1401plus (Cambridge Electronic Design, Cambridge,
UK) at 11 kHz (i.e., effectively ever second or every fourth value from
the filtered data was sampled).

MODELLING THE DISTRIBUTION OF CURRENT

The general approach of Yellen (1984) in modelling the distribution of
current was followed. A basic mathematical result, due to FitzHugh
(1983), is that if a 2-state (open-blocked) Markov process, with fixed
and known currents in the two states, is filtered with a first-order filter,
the resulting distribution of current is a beta distribution. The param-
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eters of the beta distribution are related to the transition rates between
the two states and to the time constant of the filter.

This result is of limited practical value for three reasons: it as-
sumes a linear filter, it ignores any noise in the current, and it applies
only to a two-state process. Yellen (1984) addressed the first of these
problems empirically. He used simulation to investigate the effect of
using instead an 8-pole Bessel filter and found that, over a wide range
of opening and blocking rates, the distribution of current remained
approximately beta-distributed, with the beta distribution parameters
modified according to the −3dB attenuation frequency of the filter.
He also superimposed Gaussian noise on the beta distribution. He then
fitted the resulting distribution by eye. This approach has been fol-
lowed by several subsequent authors (e.g., Pietrobon et al., 1989; Klie-
ber & Gradmann, 1993).

More recently, Rießner & Hansen (1995) have investigated the
extension of FitzHugh’s basic result when the underlying process has
more than two states. However, the differential equations analogous to
those which lead to the beta distribution for the two-state model cannot
be solved analytically in the more general case and must instead be
solved numerically.

The approach used in the present paper was instead to make some
simplifying assumptions about the underlying stochastic process and to
combine this with a model of the filter to derive the distribution of
current directly. This approach is conceptually straightforward and
computationally feasible.

STOCHASTIC MODEL OF THE CHANNEL

The temporal behavior of the channel was modelled as a continuous
time Markov process withSstates, of whichSO are open andS − SO are
closed (Colquhoun & Hawkes, 1981). The process is characterized by
the matrixQ 4 (qij) where, fori Þ j, qij is the transition rate from state
i to statej, and where

qii = − (
iÞj

qij

Two well-known results from the theory of Markov processes were
utilized (Cox & Miller, 1965, Section 4.5). First, ifpij(Dt) denotes the
probability that the channel is in statej at timet + Dt, given that it was
in state i at time t (because the process is assumed to be a Markov
process, thistransition probabilitydepends only onDt and not ont
itself), the matrixP(Dt) 4 (pij(Dt)) of transition probabilities is related
to the matrix of transition rates,Q, by the equation

P~Dt! = exp~DtQ!

This matrix exponential can be evaluated in various ways (Moler &
Van Loan, 1978). The approach of Horn & Lange (1983) was fol-
lowed, using a truncated Taylor series expansion and rescaling the
matrix Q, where necessary, to improve accuracy.

The second result concerns the equilibrium distribution of the
channel. It was assumed that any state of the channel can eventually be
reached from any other state of the channel, possibly via intermediate
states. This condition is sufficient to ensure that the channel has an
equilibrium probability distribution. Letei denote the probability that,
in equilibrium, the channel is in statei, and letE denote the column
vector withith elementei. The equilibrium probabilities can be evalu-
ated by solving the linear equations

QTE = 0

subject to the constraint that the probabilities must sum to one.

EQUILIBRIUM PROBABILITY OF A PARTICULAR SEQUENCE

OF STATES

Suppose that the channel is observed at timet and also atm preceding
times, the interval between successive observation times being equal to
Dt. Let the states of the channel at the successive observation times be
{ U(t − mDt), U(t − (m − 1)Dt), . . . , U(t)}. There areSm+1 possible
sequences of states. If the channel is in equilibrium, the probability of
a particular sequence is

eU~t−mDt! )
j=−m

−1

pU~t+jDt!,U~t+~j+1!Dt! ~Dt! (1)

Let {V(t − mDt), V(t − (m − 1)Dt), . . . , V(t)} denote the open/closed
sequence arising from the sequence {U(t − mDt), U(t − (m− 1)Dt), . . . ,
U(t)} where V(s) 4 1 if U(s) is an open state andV(s) 4 0 if U(s) is
a closed state.

There are 2m+1 possible open/closed sequences and the probabil-
ity of any particular sequence could be obtained directly by summing
probabilities given by expression (1) over all underlying sequences of
states which result in the given open/closed sequence. However, a
much more efficient algorithm has been used for calculating probabili-
ties of open/closed sequences, the so-calledforward algorithm, that
was developed in the literature onhidden Markov models. Rabiner
(1989) provides a clear description of this algorithm. Several other
authors (e.g., Chung et al., 1990; Fredkin & Rice, 1992a,b) have ap-
plied hidden Markov model techniques to ion channel problems.

MODELLING THE OBSERVED CURRENT

It was assumed that, before filtering, the current at timet, X(t), was of
the form

X~t! = mV~t! + e~t!

wheree(t) is a stationary Gaussian process with zero mean. Thus, the
expected current ism0 when the channel is closed andm1 when it is
open. There was assumed to be no baseline drift.

The observed current at timet, Y(t), results from filtering the
currentX(t). This was modelled by the equation below. The lagl (ù0)
was introduced to avoid complications with zero weights in the impulse
response function. However, because the process is stationary, the dis-
tribution of Y(t+l ) is the same as that ofY(t).

Y~t+l! = (
k=0

m

ak X~t−kDt!

The sequence {a0 , . . ., am−1, am} is a discrete approximation to the
impulse response function of the filter with ak > 0 and

(
k=0

m

ak = 1

For a particular open/closed sequence {V(t - mDt), V(t - (m - 1)Dt)
, . . . , V(t)} the distribution of observed current,Y(t), is itself Gaussian,
with mean

(
k=0

m

ak mV~t−kDt! (2)

and with variances2. The unconditional distribution of current is
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therefore a mixture of 2m+1 Gaussian distributions, with varying mean
but constant variance, the proportion of each component of the mixture
being the probability of the corresponding open/closed sequence.

A particular implication of this model, which is borne out by the
experimental data, is that the distribution of current whilst the channel
is open or closed should be Gaussian, with a standard deviation that is
not dependent on the state of the channel.

To speed up some of the computations, the following approxi-
mation was employed. Instead of working with the mixture of 2m+1

Gaussian distributions, a mixture ofR Gaussian distributions was gen-
erated with the same variance and with means equally spaced on the
interval [m0,m1]. The probability of a particular component in the new
mixture with meanm* is the sum of the probabilities assigned to all
components in the original mixture whose mean is closer tom* than to
the mean of any other component in the new mixture. The valuesm4

8 andm 4 14 were taken for data stored on videotape and DAT tape,
respectively. Thus, the original mixtures had either 512 or 32768 com-
ponents. A 65-fold saving in computational effort was obtained when
m 4 14 by takingR as 500. The loss of accuracy resulting from this
approximation is very slight because each exact mean is replaced by an
approximate mean,m*, which differs from it by at most 0.1% of the
differencem1 − m0.

STATISTICAL ANALYSIS

Since the distribution of current comprises a mixture of Gaussian dis-
tributions which can be evaluated once the rate parameters,qij , and the
parametersm0, m1 ands are known, the observed distribution of current
can be used, in principle at least, to estimate these parameters. Because
channel records often consist of 105–106 observations it is computa-
tionally efficient to work with grouped frequency data rather than in-
dividual current measurements. Therefore, the current values were
grouped intoB bins, with bin limitsb0 4 −`, b1, b2, . . . , bN−1, bN 4

`, andnk denotes the number of observed currents in the interval (bk−1,
bk). Provided thatB is reasonably large, there should be little loss of
efficiency in using grouped data rather than ungrouped data. In prac-
tice B was approximately 50, with all of the internal bins having equal
width (bk 4 bk−1 + Db, k4 2, . . . ,B − 1), but it is not essential to use
bins of equal width.

Parameters were estimated by an approximate maximum likeli-
hood method. To calculate the likelihood the probabilities

uk = Pr~bk−1 ø Y~t! , bk! k = 1, 2, . . . ,B

need to be evaluated and, because the distribution of current is a mix-
ture of Gaussian distributions, these probabilities are simply mixtures
of Gaussian probabilities. The underlying Gaussian probabilities de-
pend only on the parametersm0, m1 ands, whereas the mixture coef-
ficients depend solely on the rate parameters (qij) which determine the
equilibrium probablities and transition probabilities required to evalu-
ate expression (1).

Estimation of the rate parameters was the primary objective. Both
m0 and s were estimated directly from current recordings, during a
lengthy closure or blockade of the channel. The differencem1 − m0 was
estimated similarly, from current recordings obtained in the absence of
any blocker at each voltage, and this was used to estimatem1 when a
blocker was present. Using these estimates ofm0, m1 ands, the prob-
abilities uk for each of theR components of the mixture of Gaussian
distributions were precomputed and stored. A table that showed which
component of the mixture resulted from each of the 2m+1 open/closed
sequences was formed. This enabled the calculation of probabilitiesuk

fairly quickly, given a set of rate parameters.
A multinomial distribution was assumed for the observed fre-

quencies,nk, so that estimates were obtained by maximizing the log-
likelihood function

(
k=1

B

nk ln~uk!

Strictly speaking the observed frequencies donot have a multinomial
distribution, because successive observations are not independent and it
is in this sense that the method is referred to asapproximatemaximum
likelihood. However, the range over which observations are correlated
will generally be very short in relation to the length of the channel
record, and the effects of non-independence are therefore expected to
be slight.

The probablitiesuk are very complicated functions of the under-
lying parameters, and to maximize the log likelihood it is therefore
preferable to use an optimization algorithm that does not require de-
rivatives of the objective function. The Nelder-Mead simplex algo-
rithm (Nelder & Mead, 1965) has been used here. For a 3-state model,
with four rate parameters to be estimated and withm 4 14, our com-
puter program, written in Fortran 77 and running on a 100 MHz Pen-
tium PC, takes about 0.5 sec per iteration. Fitting a distribution typi-
cally takes less than 5 min of computing time.

LIMITATIONS OF THE METHOD

It is important to consider the range of rate parameters for which the
method is able to give useful estimates. This will depend on the sam-
pling frequency, the filter cutoff frequency and the amount of under-
lying noise. To investigate this quantitatively a simple two-state model
was considered, with rate paramtersl1 (4q12) andl2 (4q21) between
the two states. For statistical analysis it is useful to consider the natural
logarithms of these rates,g1 4 ln(l1) andg2 4 ln(l2), rather than the
rates themselves. One advantage of this is that parameters can be es-
timated using an unconstrained, rather than a constrained, optimization
routine. But also, because the rates are constrained to be positive,
estimates are likely to be more symmetrically distributed on the loga-
rithmic scale, particularly for small rates. This in turn means that in-
ferences based on standard errors of the logarithms of the rates are
likely to be more reliable than inferences based on the standard errors
of the rates themselves.

To derive standard errors ofg1 and g2 the Fisher information
matrix was calculated, based on the multinomial log-likelihood func-
tion

L(g1,g2)4(
k=1

B

nk ln~uk!

By a standard result in multinomial likelihood theory, the information
matrix has (i,j)th element

−EF­2L~g1,g2!

­gi­lj
G = N (

k=1

B 1

uk

­uk

­gi

­uk

­gj

whereE[.] denotes expectation andN 4 Snk.
The inverse of this 2 × 2matrix, whose elements are denoted by

vij , is the variance covariance matrix of the maximum likelihood esti-
mates ofg1 andg2. To study how various factors affect the precision
of the method the standard errors of ln(l1/l2) 4 g1 − g2 and ln(l1l2)
4 g1 + g2 were calculated. These are given by the following formulae

se@ln~l1/l2!# = =v11 + v22 − 2v12
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se@ln~l1l2!# = =v11 + v22 + 2v12

These formulae depend on the data only through the total number of
observations,N. Because only the relative values of the standard errors
were of interest, and not their absolute values,N 4 1 was taken. For
any other value ofN, standard errors should be divided by√N.

A chi-squared goodness of fit statistic can be calculated from the
observed and expected number of observations in each bin, possibly
pooling together bins in which the expected number of observations is
very small. BecauseN is usually large (of the order of 105 or 106) this
will give an extremely sensitive goodness-of-fit statistic and ‘signifi-
cant’ departures from the assumed model will often be detected. This
lack of fit may well be of little practical importance and may arise, for
example, through slight mismodelling of the filter or because of minor
departures from stationarity in the underlying process. However, stan-
dard errors derived in the manner outlined will be too small. A simple
correction, which has been used in the examples discussed later in this
paper, is to multiply the standard errors by a heterogeneity factor,
calculated by dividing the chi-squared statistic by its degrees of free-
dom, and taking the square root (McCullagh & Nelder, 1989, p. 175).
But again, this type of correction does not affect the relative values of
standard errors for different true parameter values, which is presently of
interest.

The standard errors of ln(l1/l2) and ln(l1l2) are plotted against
the rate parameterl1 for four values of the other rate pararmeterl2

(0.1, 1, 10, 100 msec−1; note that msec−1 4 kHz) in Fig. 1. Standard
errors were calculated for different sampling rates (22 kHz or 44.1
kHz), different cutoff frequencies for filtering (1 kHz or 2 kHz) and
different values ofs as a proportion of the unitary current (0.025 or
0.25).

The standard error of ln(l1/l2) is minimized whenl1 4 l2. Tak-
ing a sampling frequency of 22 kHz, a filtering cutoff frequency of 2
kHz and a standard deviation of 0.025 times the unitary current as
standard (Fig. 1C), doubling the sampling frequency (Fig. 1A) or halv-
ing the filter cutoff frequency (Fig. 1G) both tend to reduce the standard
error, but the effects are very slight. In these graphs the standard error
remains relatively small forl2 in the range (l1/100, 100l1). Increasing
the underlying standard deviation tenfold (Fig. 1E) reduces this range
to about (l1/10, 10l1).

Taking the same standard conditions (Fig. 1D), the standard error,
of ln(l1l2) is reduced by halving the filter cutoff frequency whenl1

andl2 are small, but increased when they are large (Fig. 1H), though
again the effects are quite small. However, doubling the sampling
frequency reduces the standard error when eitherl1 or l2 is small, and
the effect is more substantial (Fig. 1B). Increasing the underlying stan-
dard deviation tenfold again has a substantial effect (Fig. 1F), with the
standard error increasing rapidly when eitherl1 or l2 moves outside
the interval (1,10).

From Fig. 1 as a whole it is apparent that, at least forl1 andl2

in the range (0.01, 100), the standard error of ln(l1/l2) is dependent
primarily on the value of ln(l1/l2), and not on the individual values of
l1 and l2 themselves. The value of ln(l1/l2) can be estimated quite
well providedl1 andl2 are not too different. In contrast, ln(l1l2) is
best estimated when neitherl1 nor l2 is too small or too large. It is
thus estimation of the product of the rates, rather than their ratio, which
sets the limitations of the method.

A small number of simulations, designed to investigate the per-
formance of the method under ideal conditions, were also performed.
Data were simulated for both the two-state and the three-state kinetic
models described later in this paper. The simulation procedure had
three steps. First, the state of the channel at each time point was simu-
lated, using transition probabilities determined from the rate parameters
of the model. The current at each time point was then set tom0 or m1

depending on whether the channel was open or blocked, to give a

noise-free signal. The second step added random noise to the signal.
The noise in our experimental setup appears to have a quadratic spec-
tral density function and Gaussian noise with the appropriate spectrum
was simulated using a program supplied by Dr. R. Levis (Rush Medical
College, Chicago, IL). The third step was to filter the noisy current
trace, using a Gaussian approximation to the Bessel filter. All the
simulations usedm0 4 0 pA andm1 4 15 pA, and the variability of the
noise was set so that the standard deviation after filtering was 1.0 pA.
In each simulation run 100,000 points were simulated initially. These
were taken to represent data at 22 kHz for the two-state kinetic model
and 44 kHz for the three-state kinetic model. The cutoff frequency of
the Bessel filter was 2 kHz, in both instances. Sampling data by the
computer, at 11 kHz, was simulated by taking every second or fourth
value from the filtered series. Finally, a grouped frequency distribution
was formed from the sampled currents, using 50 bins of width 0.5 pA.
There were 50 simulation runs for each combination of rate parameters.

For the two-state model, conclusions based on simulations were
fully consistent with those drawn from the statistical analyses described
above (data not shown). The errors associated with rate constants in
the simulated three-state model exhibited complex relationships with
the true rate constants (seeTable 1). The rate constants for the three-
state model were chosen to cover the range estimated for the experi-
mental data, and the rate constantsk−1 andk−2 were unchanged also for
this reason (Fig. 7). In general, ask1 increased the ability to estimate
k2 and k−2 declined, but the ability to estimatek1 and k−1 improved.
By contrast, ask2 increased the ability to estimatek1 andk−1 declined,
but the ability to estimatek2 andk−2 improved. Whenk2 andk−2 were
estimated poorly, their ratio was also estimated poorly, but the ratio of
the fast rates (k1/k−1) was well estimated under most simulation con-
ditions.

Results

ESTIMATES OF RAPID RATE CONSTANTS FROM

EXPERIMENTAL DATA

In this section, the analysis of distributions of current
amplitude has been used to estimate rate constants for
both a simple two-state kinetic model (Example 1) and a
complex multistate kinetic model (Example 2). In the
first example, the rate constants for transitions between
open and closed states during the rapid gating of an
outward-rectifying K+-selective channel in the plasma
membrane ofAcetabulariahave been estimated. In the
second example, the blockade of the maxi cation channel
in the plasma membrane of rye roots by verapamil,
which is characterized by an open state linked to two
distinct blocked states, has been investigated.

EXAMPLE 1. A SIMPLE TWO-STATE MODEL: THE RAPID

GATING KINETICS OF A K+-SELECTIVE CHANNEL IN THE

PLASMA MEMBRANE OF ACETABULARIA

When plasma membrane vesicles fromAcetabulariaare
incorporated into PLB an outward-rectifying K+-
selective channel with a unitary conductance of 149 pS

119P.J. White and M.S. Ridout: Estimating Rapid Rate Constants



in symmetrical 100 mM KCl is commonly observed
(White et al., 1993). This channel exhibits complex ki-
netics. These include bursting activity (indicating the
presence of at least two closed states) and, within a burst,

the presence of at least two open states which differ in
their mean lifetimes by over an order of magnitude, the
longer one occurring rarely and noticeable only at volt-
ages higher than 60 mV (White et al., 1993). Here the

Fig. 1. Relationship between the rate parameterl1 in a simple two-state kinetic model and the standard errors of the natural logarithm of the ratio
(left column) or product (right column) of both rate parameters for values of rate parameterl2 of 0.1 (——), 1 (——), 10 (–––) and 100 msec−1

(----). Values for the sampling frequency of stored data, the cutoff frequency of the Bessel filter and the signal-to-noise ratio (provided as the
normalized standard deviation of the noise) were respectively: (A andB) 44.1 kHz, 2 kHz and 0.025; (C andD) 22 kHz, 2 kHz and 0.025; (E and
F) 22 kHz, 2 kHz and 0.25; (G and H) 22 kHz, 1 kHz, 0.025.
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rate constants (k1 and k−1) for transitions between the
closed (C) and open (O) states with the shortest duration
are estimated:

C →←
k−1

k1

O

The mean lifetimes of the shortest open- and closed-
states of the channel are defined asto and tc, respec-
tively. The rate constants for transitions between these
states are defined ask1 4 1/tc andk−1 4 1/to. During
a burst of channel activity transitions between open and
closed states are extremely rapid and could not be re-
solved temporally even when filtered at 5 kHz (White et
al., 1993). Thus, the rapid kinetics of this channel could
not be analyzed using the 50%-current threshold crossing
method (Colquhoun, 1994). To estimate rate constants
for these rapid transitions, current amplitude frequency
distributions obtained during a burst of channel activity
were analyzed after excluding data attributable to long
openings (Fig. 2). The standard deviation of the current
noise, determined when the channel was in the closed
state, was 1.10 ± 0.045 pA (mean ±SE; n 4 5 voltages)
and the relationship between unitary current and voltage
is given in Fig. 2E.

Data were fitted with a two-state kinetic model and
the fits obtained agreed well with the observed current-

amplitude frequency distributions (Fig. 2A-D). These
data also illustrate the limits of the method. The time
constant for brief openings could be reliably estimated at
60 mV (whento 4 0.09 msec,k−1 4 11.51 msec−1 and
tc 4 2.57 msec,k1 4 0.39 msec−1) but not at 50 mV
(when to 4 0.10 msec,k−1 4 9.87 msec−1; tc4 6.17
msec;k1 4 0.16 msec−1; estimated from Fig. 2). At 50
mV the analysis of distributions of current amplitude was
compromised not only by the shortk1, but also by the
worsening signal-to-noise ratio (seeFig. 1E andF). The
value ofs/unitary current increased from 0.22 at 60 mV
to 0.31 at 50 mV.

The voltage-dependence of channelPo (Fig. 2F) and
rate constants (k1 andk−1) obtained here (Fig. 2G andH)
agree qualitatively with the results obtained when current
recordings were analyzed after filtering at 100 Hz using
the 50%-threshold crossing method (White et al., 1993).
As expected, the rate constants obtained in the present
analysis were much faster (Fig. 2G andH) and the time
constants much shorter than those obtained when the
traces were analyzed after filtering at 100 Hz (White et
al., 1993). However, in both analyses,k1 (and tc)
showed a marked voltage-dependence whereask−1 (and
to) showed only a weak voltage dependence. In the pres-
ent paper, the voltage-dependence ofPo could be fitted to
a Boltzmann distribution with aV1/2 (the voltage at which
Po was half-maximal) of 108 mV and a gating charge (z)

Table 1. The relationship between the true rate constants (expressed as msec−1) and their estimated root mean square errors

True rates (msec−1) RMSE (%)

k1 k−1 k2 k−2 k1 k−1 k2 k−2 k1/k−1 k2/k−2

30 500 0.005 5 8 8 63 70 2 55
30 500 0.050 5 6 6 17 16 2 15
30 500 0.500 5 10 10 4 4 2 5
30 500 5.000 5 16 13 2 2 6 2
30 500 50.000 5 235 4039 3 3 ND 3

100 500 0.005 5 9 9 214 92 1 104
100 500 0.050 5 4 4 19 17 1 18
100 500 0.500 5 2 3 6 5 1 4
100 500 5.000 5 11 10 3 2 3 2
100 500 50.000 5 102 2065 3 4 ND 3

300 500 0.005 5 23 23 839 1637 1 47673
300 500 0.050 5 14 14 52 37 1 34
300 500 0.500 5 2 2 10 7 1 7
300 500 5.000 5 7 7 3 3 2 3
300 500 50.000 5 52 34 4 3 46 3

1000 500 0.005 5 90 101 33592 1044 2 19870
1000 500 0.050 5 25 26 7150 1312 4 11408
1000 500 0.500 5 34 33 84 50 2 29
1000 500 5.000 5 3 2 12 8 2 5
1000 500 50.000 5 23 21 7 6 13 4

RMSE are based on 50 simulations and expressed as a percentage of the true parameter value for a three-stateB1 →← O →← B2 kinetic model. The
rate constants for blockade of the open channel are indicated byk1 andk2, and the rates at which the channel is unblocked byk−1 andk−2, the
subscripts referring to the two independent blocked statesB1 andB2 respectively.ND 4 not determined.
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Figure 2.
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of 1.9. These values differ from the values obtained by
White et al. (1993;V1/2 4 170 mV, z 4 1) since more
openings were detected in the present experiments.

EXAMPLE 2. A COMPLEX MULTISTATE MODEL: THE

BLOCKADE OF THE MAXI CATION CHANNEL IN THE

PLASMA MEMBRANE OF RYE ROOTS BY VERAPAMIL

When plasma membrane vesicles from rye roots are in-
corporated into PLB a cation channel with a unitary con-
ductance of between 425 to 451 pS in symmetrical 100
mM KCl is observed (White & Tester, 1992; White,
1993, 1996). In view of its high conductance this chan-
nel has been termed a ‘maxi’ cation channel (White,
1993). In addition to its maximal conductance confor-
mation, this channel exhibits several rarely occupied sub-
conductance states approximating 93% and 12% of the
maximum conductance (White, 1993). In generating
current-amplitude frequency distributions we have ex-
cluded periods when the channel was in a subconduc-
tance state.

Verapamil blocks the maxi cation channel in a volt-
age-dependent manner at micromolar concentrations
when applied from thetrans (cytoplasmic) side of the
channel (White, 1996). Verapamil blockade of the chan-
nel becomes more pronounced as the voltage is driven
to increasingly positive values. When verapamil is ap-
plied to thecis (extracellular) compartment, the inhibi-
tion of the maxi cation channel has a similar voltage-
dependency (P.J. White,unpublished data). Since verap-
amil is lipid soluble, and believed to interact with the
channel in its cationic form, these observations imply
that verapamil interacts with the maxi cation channel
solely from thetrans (cytoplasmic) side.

Unipolar, voltage-dependent inhibition of cation
channels by verapamil is commonplace. Both the L-type
Ca2+ channels in the plasma membrane of animal cells
(Catterall & Striessnig, 1992; Hille, 1992; Ertel & Co-
hen, 1994) and the outward-rectifying K+ channel in the
plasma membrane of tobacco protoplasts (Thomine et
al., 1994) are inhibited more effectively by verapamil at

more positive voltages; and verapamil inhibition of a
Ca2+-selective channel in the plasma membrane of wheat
roots increases with increasingly negative voltages (Pi-
ñeros & Tester, 1995).

In the absence of verapamil, the maxi cation channel
remains open at low positive voltages for lengthy periods
(minutes) without closure (White, 1993). As the voltage
is driven more positive there is an increase in the fre-
quency of transitions between the open and closed states
of the channel (White, 1993). However, even at extreme
positive voltages the gating kinetics of the maxi cation
channel are slow. Therefore, most periods during which
the channel is in a closed state can be identified in current
recordings and have been eliminated from the analysis of
current amplitude frequency distributions. Any unno-
ticed closures should have negligible effect on the shape
of the open state current-amplitude distribution. Thus,
the current-amplitude frequency distributions represent
transitions between open and blocked states of the chan-
nel only.

Verapamil induces both fast and intermediate block-
ade of the channel, reducing the apparent unitary current
through the channel as well as introducing flickering to
the current recording (White, 1996). This implies that
the interaction between the channel protein and verapam-
il produces at least two blocked states, which will be
termedB1 andB2. The analysis of distributions of cur-
rent amplitude has been used to determine the kinetic
relationships between the open channel and these
blocked states. The rate constants for blockade of the
open channel by verapamil are indicated byk1 and k2,
and the rates at which the channel is unblocked byk−1

and k−2, the subscripts referring toB1 and B2 respec-
tively. Experiments were performed with 100 mM KCl
on both sides of the channel and the relationship between
unitary current and voltage in an unblocked channel is
shown in Fig. 3. The standard deviation of current noise,
determined when the channel was in the closed state, was
1.01 ± 0.021 (mean ±SE; n 4 47 determinations at
positive voltages at verapamil concentrations between 0
and 300mM).

The three-state model provided a significantly better
fit to the current-amplitude frequency distributions than a

<

Fig. 2. Analysis of the kinetics of the 149 pS K+ channel in theAcetabulariaplasma membrane assayed in asymmetrical (cis:trans) 325:100 mM

KCl. (A–D) Observed (——) and fitted (---) current frequency distributions at 60 , 70, 80, and 90 mV. Channel open- and closed-states are indicated.
Rate constants for fitted distributions are shown in panelsG andH, unitary currents in panelE and the standard deviation of the current noise
averaged 1.10 pA.Inset: Sample of the original current recordings (200msec in duration) filtered using an 8-pole Bessel filter set at 4 kHz. The
current associated with channel open (O) and closed (C) states is indicated. (E andF) The voltage-dependencies of unitary current, open probability
(calculated from the rate constants presented in panelsG andH), and rate constants for channel closing (k−1) and opening (k1). The unitary currents
were re-estimated and the value at 80 mV is slightly lower than that reported previously (White et al., 1993). The relationship between open
probability and voltage was fitted to a Boltzmann distribution of the formPo 4 (1 + exp{(zF/RT) (V1/2 − V)}) where the hypothetical gating charge
(z) was 1.88 ± 0.122 and the voltage at whichPo was half maximal (V1/2) was 108 ± 1.5 mV. Rate constants (msec−1) were fitted to an equation
of the form ln(k) 4 A + BV, whereA 4 1.29 ± 0.256 andB 4 0.020 ± 0.0033 fork−1 andA 4 −6.22 ± 0.198 andB 4 0.088 ± 0.0026 fork1.
Standard errors of rate constants are indicated by bars, when these are larger than the plotting symbols.
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two-state model (Fig. 4). However, since there is
equivalence between contrasting three-state models,
these cannot be distinguished solely on the basis of
steady-state kinetic data (Kienker, 1989). Since the rates
of blockade achieving bothB1 and B2 were dependent
upon the verapamil concentration in thetrans chamber
(Fig. 7), this implies that both blocked states are directly
accessible from thetransside of the channel and are not
linked in series. Therefore, the model

B1 ←→
k−1

k1

O →←
k−2

k2

B2

is most appropriate to describe the blockade of the maxi
cation channel by verapamil. Rate constants for this
model were estimated, with the additional assumption
that only one verapamil binding site on the protein could
be occupied at any moment.

The blockade of the maxi cation channel was depen-
dent upon both verapamil concentration and voltage
(White, 1996; Figs. 5–7). When either the verapamil
concentration was increased at a constant voltage (Fig. 5)
or more positive voltages were imposed at a constant
verapamil concentration (Fig. 6), there was a general
shift towards lower normalized currents and a broaden-
ing of the current-amplitude frequency distribution. The
three-state model fitted the experimental data well at
higher verapamil concentrations and at more positive
voltages. However, at lower verapamil concentrations
and less positive voltages, the fitted current-amplitude
frequency distributions were broader than those observed
experimentally. It is likely that the true rate constants
are slower than the estimated rate constants at lower
verapamil concentrations and less positive voltages. It is
possible that lengthy openings compromised these esti-
mates: fewer changes in state occur at lower verapamil
concentrations and less positive voltages, which mini-

mizes the deviation from a Gaussian distribution. The
ratio k1/k−1 was well estimated under most conditions.
However, the slower rate constants derived for the three-
state model were more reliable at higher verapamil con-
centrations and more positive voltages.

The rate constants for blockade of the channel,k1

andk2, were dependent upon both verapamil concentra-
tion and voltage (Fig. 7). At all voltages, the relationship
betweenk1 and verapamil concentration followed a satu-
ration curve, but there was no evidence of saturation for
k2. It was assumed that blockade occurred through entry
of cationic verapamil to the channel pore on the basis of
voltage-dependence, but, independent evidence is re-
quired to verify this. At pH 7.5 approximately 90% of
the verapamil will carry a single positive charge, the
remainder being uncharged (Roberts & Haigler, 1990).
The voltage-dependence of each rate constant was fitted
to a Boltzmann distribution (Woodhull, 1973; Eq. 2a).
The apparent fraction of the electrical distance from the
cytoplasmic side of the channel to the verapamil binding
site (d) was 0.75 fork1 and 4.24 fork2. A value for d
greater than unity contradicts any notion of the channel
having an inflexible pore structure occupied by a single
ion. Such values might be obtained if there were inter-
actions between ions within the pore of the channel
(Hille, 1992) or if access to the verapamil binding site
required a voltage-dependent structural change in the
channel protein (Draber & Hansen, 1994).

Neither of the rate constants for unblocking the
channel,k−1 or k−2, exhibited a comparable voltage-
dependence of opposite polarity to their counterparts
(Fig. 7). Thus, verapamil exited the channel protein
from both its binding sites by different routes to its entry.
This could be the result of a conformational change in
the channel protein during verapamil binding preventing
backward movement. The effect of voltage onk−1 was
not statistically significant, suggesting that the binding
site was external to the electric field or that verapamil
exited B1 in the unprotonated form. The latter mecha-
nism has a parallel with the exit of verapamil from the
pore of Ca channels in animal cells (Hille, 1992). The
rate of unblockingB2, k−2, increased significantly as the
voltage was driven more positive, suggesting the exit of
cationic verapamil towards thecis (extracellular) solu-
tion. The apparent fraction of the electrical distance
from B2 to the extracellular side of the channel (calcu-
lated using the Woodhull equation) was 0.38. Increasing
verapamil concentration resulted in a significant de-
crease in bothk−1 andk−2, which suggests the possibility
of (steric) hindrance of verapamil dissociation by vera-
pamil in the external medium.

The equilibrium binding constant (Kd) at 0 mV was
estimated as the ratio of the bimolecular blocking rate
and unimolecular unblocking rate (Hille, 1992). TheKd

values forB1andB2approximated 700mM and 140 mM,

Fig. 3. The relationship between unitary current and voltage for the
maxi cation channel in the plasma membrane of rye roots assayed in the
presence of symmetrical 100 mM KCl.
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respectively. Thus, although verapamil appears to be an
effective blocker of the maxi cation channel at extreme
positive voltages, its potency in binding studies will be
minimal.

Discussion

A method of estimating rapid rate constants from the
distributions of current-amplitude has been developed
and used successfully to estimate rate constants for both
a simple two-state kinetic model (the rapid gating kinet-
ics of a K+-selective channel in the plasma membrane of
Acetabularia) and a complex multistate kinetic model
(the blockade of the maxi cation channel in the plasma
membrane of rye roots by verapamil). Lifetimes of dis-
tinct channel kinetic states in the range 30 msec to 1msec
were adequately resolved in these analyses (Figs. 2 and
7). However, the absolute range of rate constants which
can be reliably estimated depends upon a number of
factors including the frequencies at which data is
sampled for storage (on computer, DAT or videotape)
and subsequently filtered, the signal-to-noise ratio and
the rate constants themselves (Fig. 1). It is clear that the
distribution of current varies only when the rate param-
eters lie within a certain range, but whether rate param-
eters are uniquely determined by a given current distri-
bution has not yet been established. This is an important
subject for future investigation.

The model assumes that the data are sampled and
stored on video- or DAT-tape prior to filtering, and all
filtering is applied to the data as they are stored. In re-
ality, however, the implicit filtering performed by the
amplifier has already been done before the data are
stored. This filtering will take place at much faster ef-
fective sampling rates than modelled here. It is not pos-
sible to model filtering at such high temporal resolution

at present, due to limitations in computing power. How-
ever, computational methods to extend the temporal
range of the filter are being investigated. This phenom-
enon could result in some distortion of the predicted,
relative to the actual, current frequency distributions.
This will only be of serious concern for rates that are fast
relative to the sampling rate. It should not affect esti-
mates of rate parameters for the K+ channel in the plasma
membrane ofAcetabulariaand is unlikely to account for
poor fits to the observed current frequency distributions
for the maxi cation channel from rye roots at low volt-
ages and in the presence of low verapamil concentra-
tions.

The method described in this paper extends previous
approaches to the analysis of current frequency distribu-
tions (Yellen, 1984; Rießner & Hansen, 1995) to acco-
modate both multistate kinetic models and the filtering of
data with an 8-pole Bessel filter prior to analysis. The
inclusion of a Bessel filter in the circuit has the advan-
tage that the filter frequency can be changed. This al-
lows the experimenter to adjust the shape of the current
frequency distribution to maximize the temporal range
over which the technique can be applied (cf. Klieber &
Gradmann, 1993). It also allows the experimenter to
analyze prefiltered data. With the patch-clamp amplifier
circuit described here the analysis is unlikely to benefit
much by faster sampling and/or the removal of the Bes-
sel filter since the filtering inherent in the feedback am-
plifier of the patch clamp circuit (2.25 kHz) effectively
limits the analysis.

The analysis of current-frequency distributions
complements methods based on restoration of the under-
lying process or on direct modelling of current record-
ings. The method described here has two advantages
over restoration methods. First, since the restoration
methods are critically dependent upon both filtering and
sampling frequencies, it has the advantage that data can

Fig. 4. Current frequency distributions obtained
for the maxi cation channel from rye roots at 90
mV in the presence of 100mM verapamil. The
observed data (——) are compared with fitted
distributions according to a two-state (. . . . . .) and
a three-state (----) kinetic model.
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be prerecorded and stored on DAT or videotape. Sec-
ond, it does not rely on any correction for missed events.
Finally, it is economical with computer time compared
with methods involving the direct modelling of current
records.

It would be interesting to compare rate constants

obtained for the simple two-state model from the analy-
sis of distributions of current-amplitude presented in this
paper with those obtained by the technique described by
Yellen (1984). It would also be instructive to compare
results for multistate models obtained by the method pre-
sented here with those obtained using methods based on

Fig. 5. The effect on current frequency distributions of increasing the verapamil concentration on thetrans (cytoplasmic) side of the maxi cation
channel. Currents were recorded at 70 mV in the presence of symmetrical 100 mM KCl. The observed current frequency distribution (—) is
compared with that determined for a three-stateB1 ⇀↽ O ⇀↽ B2 model (–––) calculated with the values of unitary current presented in Fig. 3, a
standard deviation of the current noise which averaged 1.01 pA and the rate constants presented in Fig. 7.Inset: Sample of the original current
recordings (300msec in duration) filtered using an 8-pole Bessel filter set at 4 kHz. The current associated with channel open (O) and blocked (B)
states is indicated.
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the presence of a single first-order filter (Rießner & Han-
sen, 1995) or by modelling the time series directly (Fred-
kin & Rice, 1992a). Such comparisons will be the sub-
ject of future work.
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Fig. 6. The effect on current frequency distributions of increasing voltage at a verapamil concentration on thetrans (cytoplasmic) side of the maxi
cation channel of 100mM. Currents were recorded in the presence of symmetrical 100 mM KCl. The observed current frequency distribution (——)
is compared with that determined for a three-stateB1 ⇀↽ O ⇀↽ B2 model (–––) calculated with the values of unitary current presented in Fig. 3,
a standard deviation of the current noise which averaged 1.01 pA and the rate constants presented in Fig. 7.Inset: Sample of the original current
recordings (300msec in duration) filtered using an 8-pole Bessel filter set at 4 kHz. The current associated with channel open (O) and blocked (B)
states is indicated.
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Fig. 7. The relationship between the rate constants for theB1 ⇀↽ O ⇀↽ B2 kinetic model and voltage. The rate constants (msec−1) for blockade of
the open channel by verapamil are indicated byk1 andk2, and the rates at which the channel is unblocked byk−1 andk−2, the subscripts referring
to the two independent blocked statesB1 andB2 respectively. Data were obtained at verapamil concentrations in thetrans (cytoplasmic) chamber
of 10 mM (,), 30 mM (n), 100mM (h) and 300mM (s). Standard errors for rate constants are indicated by vertical bars, but are not presented for
k1 andk−1 because they were erratic and frequently very large. However, the estimates had a high negative correlation and the standard error of
ln(k1/k−1) was generally small. The fitted lines are parallel regression curves. Intercepts fork1 were 2.45 (10mM), 3.90 (30mM), 4.26 (100mM) and
5.35 (300mM), and the slope was 0.0148. Intercepts fork−1 were 6.78 (10mM), 6.79 (30mM), 6.29 (100mM) and 6.28 (300mM), and the slope was
−0.0034. Intercepts fork2 were −7.70 (10mM), −7.16 (30mM), −5.44 (100mM) and −3.24 (300mM), and the slope was 0.084. Intercepts fork−2

were 2.61 (10mM), 1.40 (30mM), 1.30 (100mM) and 1.53 (300mM), and the slope was 0.0085. For ln(k1/k2) intercepts were −4.32 (10mM), −2.89
(30 mM), −2.03 (100mM) and −0.93 (300mM), and the slope was 0.0182.

128 P.J. White and M.S. Ridout: Estimating Rapid Rate Constants



References

Albertsen, A., Hansen, U.-P. 1994. Estimation of kinetic rate constants
from multi-channel recordings by a direct fit of the time series.
Biophys. J.67:1393–1403

Ball, F.G., Davies, S.S. 1995. Statistical inference for a two-state
Markov model of a single ion channel, incorporating time interval
omission.J. Roy. Statistical Soc. B57:269–287

Bertl, A., Blumwald, E., Coronado, R., Eisenberg, R., Findlay, G.,
Gradmann, D., Hille, B., Ko¨hler, K., Kolb, H.-A., MacRobbie, E.,
Meissner, G., Miller, C., Neher, E., Palade, P., Pantoja, O., Sanders,
D., Schroeder, J., Slayman, C., Spanswick, R., Walker, A., Willi-
ams, A. 1992. Electrical measurements on endomembranes.Sci-
ence258:873–874

Catterall, W.A., Striessnig, J. 1992. Receptor sites for Ca2+ channel
antagonists.TIPS13:256–262

Chung, S.H., Moore, J.B., Xia, L., Premkumar, L.S., Gage, P.W. 1990.
Characterization of single channel currents using digital signal-
processing techniques based on Hidden Markov Models.Phil.
Trans. Roy. Soc. London B329:265–285

Colquhoun, D. 1994. Practical analysis of single channel records.In:
Microelectrode Techniques. The Plymouth Workshop Handbook.
D. Ogden, editor. pp. 101–139. Company of Biologists, Cambridge

Colquhoun, D., Hawkes, A.G. 1981. On the stochastic properties of
single ion channels.Proc. Roy. Soc. London B211:205–235

Colquhoun, D., Sigworth, F.J. 1983. Fitting and statistical analysis of
single-channel records.In: Single-Channel Recording. B. Sakmann
and E. Neher, editors. pp. 191–264. Plenum, New York

Cox, D.R., Miller, H.D. 1965. The Theory of Stochastic Processes.
Chapman & Hall, London

Draber, S., Hansen, U.-P. 1994. Fast single-channel measurements re-
solve the blocking effect of Cs+ on the K+ channel.Biophys. J.
67:120–129

Draber, S., Schultze, R. 1994. Correction for missed events based on a
realistic model of a detector.Biophys. J.66:191–201

Ertel, E.A., Cohen, C.J. 1994. Voltage-dependent interactions: The
influence and significance of membrane potential on drug-receptor
interactions.Drug Devel. Res.33:203–213

FitzHugh, R. 1983. Statistical properties of the asymmetric random
telegraph signal, with applications to single-channel analysis.Math.
Biosci.64:75–89

Fredkin, D.R., Rice, J.A. 1992a. Maximum likelihood estimation and
identification directly from single-channel recordings.Proc. Roy.
Soc. London B249:125–132

Fredkin, D.R., Rice, J.A. 1992b. Bayesian restoration of single-channel
patch clamp recordings.Biometrics48:427–448

Heinemann, S.H., Sigworth, F.J. 1988. Open channel noise. IV. Esti-
mation of rapid kinetics of formamide block in gramicidin A chan-
nels.Biophys. J.54:757–764

Heinemann, S.H., Sigworth, F.J. 1991. Open channel noise. VI. Analy-
sis of amplitude histograms to determine rapid kinetic parameters.
Biophys. J.60:577–587

Hille, B. 1992. Ionic Channels of Excitable Membranes. Sinauer As-
sociates, Sunderland, MA

Horn, R., Lange, K. 1983. Estimating kinetic constants from single
channel data.Biophys. J.43:207–223

Kienker, P. 1989. Equivalence of aggregated Markov models of ion-
channel gating.Proc. Roy. Soc. London B236:269–309

Klieber, H.-G., Gradmann, D. 1993. Enzyme kinetics of the prime K+

channel in the tonoplast ofChara: selectivity and inhibition.J
Membrane Biol.132:253–265

McCullagh, P., Nelder, J.A. 1989. Generalized Linear Models. Chap-
man and Hall, London

Miller, C. 1982. Open-state substructure of single chloride channels
from Torpedoelectroplax.Phil. Trans. Roy. Soc. London B299:
401–411

Moler, C., Van Loan, C. 1978. Nineteen dubious ways to compute the
exponential of a matrix.SIAM Review20:801–836

Nelder, J.A., Mead, R. 1965. A simplex method for function minimi-
zation.Computer J.7:308–313

Pietrobon, D., Prod’hom, B., Hess, P. 1989. Interactions of protons
with single open L-type calcium channels. pH-dependence of pro-
ton-induced current fluctuations with Cs+, K+ and Na+ as permeant
ions.J. Gen. Physiol.94:1–21
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